
The Case for RDMA

Jim Pinkerton
RDMA Consortium

5/29/2002

Agenda

• What is the problem?
– CPU utilization and memory BW bottlenecks
– Offload technology has failed (many times)

• RDMA is a proven sol’n to the problem
• What is RDMA?

– Example protocol – Sockets Direct Protocol
– Common objections to RDMA

Existing Performance
Bottlenecks

• Network CPU utilization limits the CPU-bound
application
– Any size message

• Protocol overhead (interrupts, ack processing, etc)
– Medium/Long messages

• Receive Copy overhead
– Short messages

• Kernel bypass (completions are the issue)
• Bandwidth limits

– Receive Copy limits single stream BW to the bcopy
rate of a single CPU

Scaling - Throughput

0.5 CPUs0.5 CPUs900010 G/s
TCP Offload or
WSD SAN

12 CPUs5.0 CPUs770010 G/s, TCP
0.2 CPUs0.2 CPUs891WSD SAN
1.2 CPUs0.5 CPUs7691 GBE, TCP

Rx CPUsTx CPUsThroughput
(Mb/sec)

Test

We’ve got a
Problem here…

Red = Conjecture

All tests on Windows 2000, Service Pack 2, running ttcp throughput tests

Todays tests: 64 KB window, 64 KB I/Os, 2P 600 MHz PIII,
Tomorrow’s tests: 640 KB window, 64 KB I/Os
THIS IS A BEST CASE SCENARIO – 9000 B MTUs. For
1500 B MTU, scale packet rate by 6

Can’t wait for Moore’s
Law to fix this

White paper at: http://www.microsoft.com/windows2000/techinfo/howitworks/default.asp

http://www.microsoft.com/windows2000/techinfo/howitworks/default.asp

Scaling - Transactions
• Increased Data Center Capacity

– CPU bound apps have more CPU
– Distributing applications are more attractive if less

overhead
– Maintenance functions have less overhead

• Backup, restore, content distribution

• Null RPC tests - 60% better with RDMA
– measure the network overhead of RPC
– while() loop doing RPCs which don’t perform any work

89%97.4%34,162WSD SAN, XP

82.5%95.6%21,310TCP, W2K
93.7%98.6%28,860WSD SAN, W2K

Server %
Utilization

Client %
Utilization

Null RPC/secTest

Scaling – Memory BW

1600020.0120004000IB 12x

40005.030001000IB 4x

10001.25750250IB 1x

500018.83750125010 GBE

5001.9375125GBE

4001.5300100Fibre Channel

Total
Memory BW
(Bcopy +
DMA)

CPUs for
Bcopy at 200
MB/sec

Memory BW
for Bcopy
(3x raw rate)

Raw
Bandwidth
(BW)

Fabric

For receive we’ve got a problem without zero copy…
Red = Conjecture

Existing Cost Bottlenecks
• Initial Cost

– TCP Offload NICs have a huge amount of buffering
• High speed memory interface to off chip memory is expensive
• High speed memory is expensive
• Puts the NIC vendor in an awkward position

– Are they designing for high latency links or low latency – maps to
how much buffering is required.

– Today’s proprietary RDMA NICs take above cost and add
more

• Management Cost
– Today’s proprietary RDMA NICs require

• Proprietary management applications
• Separate network within the data center

• TOE does not solve the receive copy
– Middleware library header/data split

RDMA is a proven approach for
Today’s Applications

• Transactional Database
– SQL, DB2, Oracle all get best performance from RDMA fabrics today (VIA)
– SDP – Sockets Direct Protocol – is also used

• File Oriented Storage
– DAFS, BDS (SGI), NFS (research by Sun)

• Block Oriented Storage
– ANSI SRP, ANSI SST

• High Performance Computing
– Various MPI libraries based on VIA
– ASCI Blue Mountain (SGI)

• Backup
– Backup system from SGI

• Summary
– All met their targeted performance goals
– All are currently limited to the Data Link Layer
– All the above are commercial products

– Almost none of the above are/were commercially
successful

Why can offload/RDMA work
now?

• NIC volume is approaching CPU volume
• Ratio of CPU power to network speed is closing
• 10 GB Ethernet has a serious problem
• Key problems of offload technology

– NICs are too expensive
• Initial cost – solved by silicon integration, volume
• Management cost – currently proprietary fabric, solved by

moving to standard network infrastructure (ethernet)
– Applications don’t take advantage of it

• Sockets Direct Protocol enables unmodified applications to use
it

• Think of Graphics offload
– Early days CPU attempted to take over the graphics offload

market
– Strong need, with applications, created a self-sustaining

innovative cycle of profits and next generation hardware

Proposal: Create an RDMA
Protocol at the Transport Layer

Enable RDMA applications to “get off the
link” by creating an RDMA protocol shim

at the transport layer

So What Is RDMA?

Traditional DMA

Buffer 1Buffer 1 Buffer 2Buffer 2

CPUCPU

1) Buffer Copy:
CPU moves the data

1)1)

Host A

DMA DMA
EngineEngine

Src Address
Dst Address
Length

2)2)

2) Buffer copy with DMA engine
CPU programs DMA engine
DMA engine moves data
DMA engine notifies CPU
when done

Remote DMA

Buffer 1Buffer 1 CPUCPU

NICNIC
(RDMA (RDMA
Engine)Engine)

Src Address, Host A
Dst Address, Host B
Length

3)

Host A

Buffer 2Buffer 2

1) Buffer Copy:
CPU moves the data

2) Buffer copy with DMA engine
CPU programs DMA engine
DMA engine moves data
DMA engine notifies CPU
when done

3) Remote RDMA:
CPUs program NICs
NICs transfers data
NICs notify CPUs when done

NICNIC
(RDMA (RDMA
Engine)Engine)

Host B

CPUCPU

networknetwork

So What is RDMA?
• Typically 3 Data Transfer Mechanisms

– RDMA Write
– RDMA Read
– Sequenced Reliable Datagrams (Sends)

• Pass thru to SCTP (some outstanding issues)
• Requires Framing for TCP

• Transfer mechanisms can be combined by the ULP to create ULP
unique sequences that don’t require the destination to process
intermediate operations
– Explicit ULP source controlled event notification

• Enables ULP to
– explicitly demultiplex header from data
– explicitly manage their buffers

• Enables a low-latency infrastructure in the data center
• Shown to be a useful model for a wide variety of ULP

application types

Proposed RDMA Layering

SOCK_STREAM

Reliable, Sequenced
Datagrams

ULP (e.g. NFS, iSCSI, etc)RDMA

DDP & RDMA

Framing

SCTP
TCP

IP

Data Link Layer

One Possible Kernel Bypass
Architectural Model

Middleware
(NFS, SDP, etc)

OS Modules

Hardware

User
Kernel

Sockets
Layer

TCP/IP
Transport

Driver

Sockets
Layer

TCP/IP
Transport

Driver

User
Kernel

Application

NIC

Application

Traditional Model Possible Model

Sockets

Middleware
ULP

Kernel
Bypass

RDMA
Semantics

RDMA NIC

Ex: RDMA ULP – Buffer Model
Private Buffer
Pool

Private Buffer
Pool

Zero
Copy
Path

NIC

Sends

Buffer
Copy
Path

Fixed
Size

NIC

Sends

RDMA Read
RDMA Write

Data
Source

User
Buffer

Data Sink
User

Buffer

RDMA Read
RDMA Write

• Enables buffer-copy when
– Transfer is short
– Application needs buffering

• Enables zero-copy when
– Transfer is long

Ex: RDMA ULP - Bcopy
Data SinkData Source

Send of data
in buffer size

chunks Data Msg w/ data

Data Msg w/ data

Data Msg w/ data

Data Msg w/ data

Receive data
in buffer size
chunks

Data Msg
w/o data

No ACK for data
because link
is reliable

Flow control update
is piggybacked on
reverse channel
traffic

Required msg
Optional msg

Ex: RDMA ULP - Read Zcopy
Data SinkData Source

Src exposes
buffer

SrcAvail (might contain data)

RDMA Read

Sink retrieves
Buffer

RdmaRdCompl

Src deregisters
buffer

Sink data
transfer
complete,
notifies Src

Ex: RDMA ULP - Write Zcopy
Data Sink

SinkAvail

SrcAvailSrc optionally tells
Rx Write is

available

Data Source

Sink exposes
buffer

Src cancels SrcAvail,
Uses Write Zcopy

Src sends data RDMA Write

Src sends header Sink receives dataRdmaWrCompl
Sink receives
header
for data

Other Methods That Are Not
General or Don’t Scale

• Page flipping
• Header/payload separation
• Scatter Gather List (SGL)
• NIC memory mapping
• Terminate ULP in the NIC

Why Now
• Industry has played quite a bit with RDMA.

Solutions are converging.
– Open October 2001 RDMA face-to-face had wide

consensus on requirements for the protocol
– Proprietary RDMA solutions have shown they don’t

have the volume to be sustainable (interoperable
standard is required)

• Ratio of network I/O to CPU has changed
• Volume of network cards now approaches

volume of CPU
– There is sufficient profit to continue

improvements in the technology while CPU speeds
increase

DDP & RDMA
• Direct Data Placement (DDP)

– Some within the IETF prefer to solve only the
receive side copy problem

– Simplification of RDMA Write
• RDMA and DDP

– Some prefer to solve receive side copy, plus:
• Short message problem
• Create a richer message paradigm
• Optimizations unique for:

– Distributed applications
– High Performance Computing (HPC) Applications
– Pull data instead of push data
– Distributed lock management

Some Objections to RDMA
• More complex API than TCP/stream interface

– A new API is not required (but worthwhile for
some applications) – Sockets Direct Protocol (SDP)

• RDMA-accelerated ULPs not wire compatible
with unaccelerated variants
– Extremely valid – but worth the cost

• Hardware vendors must all agree for
approach to succeed in the market
– Extremely valid – but worth the cost

Some Objections to RDMA

• Security concerns about opening
memory on the network
– Hardware enforces application buffer

boundaries
• Makes it no worse than existing security

problem with a 3rd party inserting data into the
TCP data stream

– Buffer ID for one connection must not be
usable by another connection

Bottom Line
• There is a real problem:

– In scaling today’s applications in the data center
– In scaling the network to 10 GBit Ethernet speeds

• RDMA and Direct Data Placement is a proven
technology to solve the problem – but several
problems need to be solved
– RDMA needs a transport layer encapsulation
– RDMA spec must be an open and interoperable standard

• Thus RDMA should be standardized on
Ethernet fabrics using Internet
protocols

Additional Reading
• IETF RDMA Problem Statement

– http://www.ietf.org/internet-
drafts/draft-romanow-rdma-over-ip-
problem-statement-00.txt

– Proposed charter on rdma reflector at yahoogroups.com
• Supporting Material

– http://www.microsoft.com/windows2000/techinfo/howitworks/def
ault.asp

– http://www.cs.duke.edu/ari/publications/end-system.{ps,pdf}
– H.K. Chu, "Zero-copy TCP in Solaris", Proc. of the USENIX 1996

Annual Technical Conference, San Diego, CA, Jan. 1996
– V. S. Pai, P. Druschel, W. Zwaenepoel, "IO-Lite: a unified I/O

buffering and caching system", Proc. of the 3rd Symposium on
Operating Systems Design and Implementation, New Orleans, LA,
Feb. 1999

– See references at end of problem statement

http://www.ietf.org/internet-drafts/draft-romanow-rdma-over-ip-problem-statement-00.txt
http://www.ietf.org/internet-drafts/draft-romanow-rdma-over-ip-problem-statement-00.txt
http://www.ietf.org/internet-drafts/draft-romanow-rdma-over-ip-problem-statement-00.txt
http://www.ietf.org/internet-drafts/draft-romanow-rdma-over-ip-problem-statement-00.txt
http://www.microsoft.com/windows2000/techinfo/howitworks/default.asp
http://www.cs.duke.edu/ari/publications/end-system.{ps,pdf

	The Case for RDMA
	Agenda
	Existing Performance Bottlenecks
	Scaling - Throughput
	Scaling - Transactions
	Scaling – Memory BW
	Existing Cost Bottlenecks
	RDMA is a proven approach for Today’s Applications
	Why can offload/RDMA work now?
	Proposal: Create an RDMA Protocol at the Transport Layer
	So What Is RDMA?
	Traditional DMA
	Remote DMA
	So What is RDMA?
	Proposed RDMA Layering
	One Possible Kernel Bypass Architectural Model
	Ex: RDMA ULP – Buffer Model
	Ex: RDMA ULP - Bcopy
	Ex: RDMA ULP - Read Zcopy
	Ex: RDMA ULP - Write Zcopy
	Other Methods That Are Not General or Don’t Scale
	Why Now
	DDP & RDMA
	Some Objections to RDMA
	Some Objections to RDMA
	Bottom Line
	Additional Reading

